
Development of a Predictive -Reqactive Scheduler Using Genetic Algorithms
and

Simulation -based Scheduling Software

Albert Jones
National Institute o f Standards and Technology
Metrology Bldg Room A127
Gaithersburg, MD 20899-001
USA

jonesa@cme.nist.gov
301-975-3554

Frank Riddick
National Institute of Standards and Technology
Metrology Bldg Room A127
Gaithersburg, MD 20899-001
USA

riddick@cme.nist.gov
301-975-3892

Luis Rabelo
Ohio University
Stocker Engineering Center
Athens, OH 45701-2979
USA

rabelo@bobcat. ent.ohiou.edu
614-593-1542

t

6

Property Of
MSlD Library

SYNOPSIS

Simulation -based scheduling packages are widely used in manufacturing plants around the world.
These packages include a large number of “canned” dispatching rules which produce schedules
for both simple and complex production environments. Users can extend these canned rules by
adding their own plant-specific rules. In this paper we describe an iterative approach in which we
first generate schedules using an optimal search technique, genetic algorithms (GA), and then
predict how well those schedules perform using the simulation -based scheduling software, We
also describe an information model for a status database which provides the basis for using this
iterative approach for reactive scheduling as well.

INTRODUCTION

Discrete -event, simulation -based scheduling packages are widely used in manufacturing plants
around the world. These packages include a large number of “canned” dispatching rules which
will produce schedules for both simple and complex production environments. Users can extend
these canned rules by adding their own plant-specific rules. I t i s important to note that these rules
are guaranteed to produce only feasible schedules. The notion of optimality (or near-optimdity)
with respect to one or more performance measures is typically not considered. In fact, the
knowledge about which rule(s) to use to achieve some desired pqformance measure(s) must be
supplied by the user or derived from extensive experimentation wi& the packages.

In this paper we describe a new iterative approach in which we first generate schedules using a
genetic algorithm (GA). The GA is an optimal search technique which generates candidate
schedules. Candidate schedules are evaluated using a commercial simulation -based scheduling
package. The evaluation will predict how well the system will perform if the resulting schedule
i s implemented. This “generate -evaluate” loop continues until the optimal solution has been
found, or some threshold limit has been reached. By optimality we mean that no further
improvement in the performance measure(s) can be found. Hence, this approach will lead to the
best schedule for the given performance measure(s). By threshold limit we mean a search time
(like 1 second) limit or a maximum number of candidates (like 100 schedules) to evaluate.
Because the GA is very fast, and the simulations are completely deterministic, this approach can
be used to modify existing schedules (reactive scheduling) based on feedback from the shop
floor.

The paper i s organized as follows. In section one, we summarize the technique which
generates schedules based on genetic algorithms. In section two, we provide the EXPRESS

Queue Pos. Job Type Arrival Time Processing Time
1 6 789 Nomai(8,0.4)
2 6 805 Normal(8,0.4)
3 5 809 Normal(10,0.6)
4 1 826 Norma1(4,0.2)
5 2 830 Normal(6,O. 3)
6 7 832 Normal(15,0.75)
7 6 847 Normal (8,0.4)
8 3 848 Norma1(5,0.2)
9 1 855 Normd(4,0.2)
10 4 860 Nomal(3,O. 1)

The set-up time for these jobs is sequence dependent as shown in Table 2,

information model for the status database which is used to do reactive scheduling. In the find
section, we describe out future plans.

SCHEDULING USING GENETIC ALGORITHMS

We now describe a methodology for solving the real-time sequencing and scheduling problems
using genetic algorithms.

Genetic Aborithms (GA)
F

Genetic algorithms (GA) are an optimal search technique based o*a direct analogy to Darwinian
natural selection and mutations in biological reproduction. In principle, genetic algorithms
encode a parallel search through concept space, with each process attempting hill climbing [15].
Instances of a concept correspond to individuals of a species. Induced changes and
recombinations of these concepts are tested against an evaluation function to see which ones will
survive to the next generation.

The use of genetic algorithms requires five components:

1. A way of encoding solutions to the problem - fixed length string of symbols.
2. An evaluation function that returns a rating for each solution.
3. A way of initializing the population of solutions.
4. Operators that may be applied to parents when they reproduce to alter their genetic

composition such as crossover (i.e. exchanging a randomly selected segment between
parents), mutation (i.e. gene modification), and other domain specific operators.

5. Parameter setting for the algorithm, the operators, and so forth.

The following example illustrates the application of both the blind recombination and partially
mapped crossover (PMX) operators [8] to a simple sequencing problem with 7 job types. Each
job-type has i ts own arrival time, due date, and processing time distributions. The objective i s to
determine a sequence that minimizes Maximum Tardiness.

Table 1. The sequencing problem

Due Date
890
911
910
886
905
1009
956
919
919
920

Table 2. Set-Up Times Dependencies

Previous Job Type

1
2

Current 3
JobType 4

5
6
7 P

The simple procedure described below i s used to resequence the 10 jobs in the queue until no
improvement in the objective function can be found (i.e. we have the optimal solution).

1. Randomly generate n feasible sequences e.g., n=50.
2. Compute the tardiness for each sequence and rank from lowest to highest.
3. Choose the m best sequences, m e n, e.g. m=25.
4. Use blind recombination operator to produce a new set of n feasible sequences.
5. Randomly select pairs of sequences. Apply PMX operator.
6. Randomly select a pair of jobs in each offspring and mutate (switch) them.

The PMX operator generates offspring by randomly selecting a swapping interval between
two crossover points and switching the jobs. These offspring will inherit the elements from the
interval of one of the parents. If the resulting sequence is infeasible (has one or more duplicate
jobs) the infeasibility must be removed through a technique known as mapping and exchanging,
For example, consider two sequences (A and B):

Position: 1 2 3 4 5 6 7 8 9 10

A(Job Numbers)
B(Job Numbers)

9
8

8
7

4
1

5
2

6
3

7
10

1
9

3
5

2
4

10
6

If the swapping interval 4 to 6 were selected, then the application ofPMX would yield

Position: 1 2 3 4 5 6 7 8 9 10

-:

A'
B'

9
8

8
7

4
1

2
5

3
6

10
7

1
9

3
5

2
4

10
6

two infeasible sequences. Now, we apply the mapping and exchanging technique to remove
duplicate jobs. This yields the following two feasible offsprings.

Position: 1 2 3 4 5 6 7 8 9 10

A" 9 8 4 2 3 10 1 6 5 7
B" 8 10 1 5 6 7 9 2 4 3
These offspring do not necessarily replace their parents in the population; they are simply placed
among the rest of the potential solutions according to their ranking.

A number of approaches have been utilized in the application of genetic algorithms (GA) to
job shop scheduling problems [8, 161. (references). Most relevant to this research i s the work

presented in Starkweather et a]. 1261. They were the f i rs t to use genetic algorithms and on-line
simulation to solve a dual-criteria job shop scheduling problem in a real production facility.
Those criteria were the minimization of average inventory in the plant and the minimization of
the average waiting time for an order to be selected. Their approach generated schedules which
produced inventory levels and waiting times which were acceptable to the plant manager. In
addition, the integration of the genetic algorithm with the on-line simulation made it possible to
react to changing system dynamics.

Selecting initial schedules

The key to using genetic algorithms effectively in solving s uiing problems lies in the
generation of "good" initial schedules. In this research, we g neural networks to select
dispatching rules which are then used to generate these initial schedules, This approach was used
because 1) neural networks are very fast and learn simple relationhsips quickly, and 2) the
performance of the selected dispatching rules on real systems could be easily evaulated by
simulation -based scheduling software. Specifically, as indicated in Figure 1, we use a
backpropagation neural network to rank the available rules for each performance measure of
interest (This allows us to handle single or mu1tiple performance measures.)

U

SPT

LFT

FIFO

LIFO

SST

: LST

0

0

0

CR

Fig 1 Neural Network for Ranking Dispatching Rules
The weights for each of the nodes in these networks are selected after a thorough training. To

carry out this training, we first generate training data sets from a large collection of simulation
studies.

Suppose we wanted to train a neural net to minimize the maximum tardiness and we wanted to
consider the following dispatching rules: SPT, LPT, FIFO, LIFO, SST, LST, CR, etc. (See Figure
1). After simulating each of these rules off-line under a variety of input conditions, we would be
able to rank them to determine the rule which minimizes the maximum tardiness under different
conditions. We would then use these results to train (i.e., choose weights) a neural net. Weight
selection i s done using the gradient-descent technique in a feed-forward network. The training

attempts to minimize the cost function: C(W) = %x(Tip - Oip) where the Tip i s the target value,
Oip i s the output of network, i i s the output nodes, and p is the training patterns. After the
network propagates the input values to the output layer, the error between the desired output and
actual output will be "back-propagated'' to the previous layer. In the hidden layers, the error for
each node i s computed by the weighted sum of errors in the next layer's nodes. In a three-layered
network (see Figure 2), the next layer means the output layer. If the activation function is
sigmoid, the weights are modified according to

or

where Wij i s weight from node i to node j, h is the learning rate, Xj i s the output of node j,
Tj i s the target value of node j,dk is the error function of node k.

If j is in the output layer, relation (1) i s used. Relation (2) is for the nodes in the hidden layers.
The weights are updated until the cost function i s minimized.

An examde

Using the data from Tables 1 and 2, we first ran the neural network for min Maximum Tardiness
for thirteen dispatching rules (see Table 3). The ranking from the neural network was SPT,
SPST, EDD, mSLACK, and CR. The actual results from a simulation we ran are shown in the
Table 3. From the table, we can see that there was a very high correlation between the rankings
from the nerual network and the actual simulation results.

We then used the SPT and mSLACK sequences (6 8 9 10 7 3 4 1 2 5}, (6 3 8 1 4 7 9 10 2 5}
as inputs to our Genetic Algorithm. We stopped the search afier 200 ms, and examined the
results. The sequence was 14 3 6 9 10 8 7 1 2 5) which produced a Maximum Tardiness of 4. In
less than 1 second, the optimal sequence was found to be (8 5 4 1 2 3 9 10 6 7) with a
Maximum Tardiness of 2. I t i s interesting to note, that this sequence could not be generated
using any of the dispatching rules we tried. Because of this, we have initiated a research effort to
use inductive learning to derive rules frmothis schedule which could eventually be put into some
rule base for future use.

The main conclusion to be drawn from these results i s using a commercial scheduling
package based strictly on dispatching rules, can lead to solutions which are far from optimal. To
overcome this problem we are attempting to integrate this schedule generation technique based
on genetic algorithms with two commercial scheduling packages. We will update our progress
on this effort at the conference.

Table 3. Neural Network Results

Rule Rank Max Tardiness Job Sequence

SPT
LFT
FIFO
LIFO
SST
LST
SPST
LSPT
EDD
LDD
mSLACK
CR
SLACK

1
8
7
5
7
6
1
8
3
9
2

3
4

7
57
54
42
54
43
7
57
12
74
11
12
18

6 8 9 10 7 3 4 1 2 5
I 2 5 4 3 7 6 8 9 1 0
1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1
4 1 2 5 3 7 6 8 9 10
3 1 4 6 2 7 8 5 9 1 0
6 8 9 10 7 3 4 1 2 5
1 2 5 4 3 7 6 8 9 1 0
6 8 3 7 1 9 4 10 2 5
x 2 10 4 1 9 7 3 8 6
63 8 1 4 7 9 10 2 5
1 6 3 8 4 7 9 10 2 5
8 1 0 6 9 7 3 4 1 5 2

PREDICTIVE and REACTIVE SCHEDULING

Whenever a new job enters the system, we want to generate a schedule which will predict when
that job will finish, and its impact on a variety of system performance measures. Whenever
conditions change on the shop floor, we want to be able to react to these changes by modifying
the current schedule. To do this, we must know the shop floor “status”. This status is used as
input to the neural networks and the simulations. We have been working with vendors and users
to define this concept of “status”. The following preliminary data model, written usin
express data modelling language, i s used to capture the relevant information units for maintaining
status.

SCHEMA shop-floor-status ;

TYPE id = STRING ;
END-TYPE ;
(* Generic id type

TYPE real-quantity =REAL,
END-TYPE;

t

(* Specifies a quantity of somei,,,ag which may have fractional parts

c

TYPE whole-quantity = INTEGER ;
END-TYPE;
(* Specifies a whole quantity of something

TYPE percentage =REAL,
END-TYPE;
(* Specifies a percentage of something

TYPE elapsed-time =REAL;
Em-TYPE ;
(* Specifies the seconds since an event

*)

*>

*>

*>

TYPE load-status = ENUMERATION OF

END-TYPE;
(* Specifies the processing state of a load.
* started -----> load is processing normally
* not-started -> load has never been in started state
* ended ------->allprocessing for the load has completed
* interrupted -> a previously started load's processing has been stopped for unknown reasons
* restarted ---> a previously intempted or held load i s now processing normally
* held _--_----> a previously started load's processing has been manually stopped
* released ----> a previously held load is ready to be restarted
*)

(started, not-started, ended, interrupted, restarted, held, released);

TYPE resource-type = ENUMERATION OF

END-TYPE ;
(* Specifies the kinds of resources in a factory.
* operator ----> a human resource
* machine ----> a device which uses tools to manufacture parts
* tool --------> a implement used by a machine or operator to modify parts
* fixture -----> a device which hold parts to facilitate their
* modification by other resources
*>

(operator, machine, tool, fixture);

TYPE resource-status =
ENUMERATION OF
(available, busy, setup, tear-down, pm, broken, blocked, off-shift);

END-TYPE ;
(* Specifies the processing state of a resource.
* available ---> resource is not being used
* busy --------> resource i s processing a load
* setup _ ___ ___> resource is involved in a setup process for itself or another resource
* tear-down-> resource i s involved in a tear down process for itself or another resource
* Pm ---------> resource is involved in preventative maintenance
* broken ---> resource is broken
* blocked ---> some external force i s preventing the resource from transitioning to i ts next

state
* off-shift ---> resource i s currently not busy and not available
*>

*

ENTITY timestamp ABSTRACT SUPERTYPE;
year, month, day,
hour, minute, seconds: NUMBER ;

END-ENTITY ;
(* Concrete types based on this abstract type will specify
* attributes for year, month, day, hour, minutes and second.
*)

ENTITY product ;

END-ENTITY ;
(* Defines the state for a part or sub-assembly that is being produced
* in the factory.
* Only the id attribute i s needed for maintaining factory status.
*)

id: id ; -- Identifier for a product

ENTITY order ;

END-ENTITY ;
(* Defines the state for a request to build a particular product as p&
* of a load.
* Only the id attribute i s needed for maintaining factory status.
*)

id: id ; -- Identifier for an order

ENTITY jobstep;
id: id ; -- Identifier for a jobstep

END-ENTITY ;
(* Defines the state for a manufacturing operation that wi l l be
* performed on a load.
* Only the id attribute i s needed for maintaining factory status.
*)

ENTITY load ;
id: id ; -- Identifier for a load
product: product ; -- The product being produced
order: order ; -- The order which created the load
current-amount: whole-quantity ;-- Current # of parts in a load
start-amount: whole-quantity ;-- Beginning # of parts in a load
start-date: timestamp ; -- The planned starting date
due-date: timestamp ; -- The planned completion date
release-date: OPTIONAL timestamp ; -- The actual start date
resources: SET OF resource ; -- The resources current@ associated with this load
currentjobstep: jobstep ; -- The currently associated jobstep
currentjobstep -start-time: timestamp ; -- The time when this started
pieces-complete-percentage: percentage ; -- The percent of the load which is complete
up-time-logged: elapsed-time ;-- The amount of time this load has actually been

-- processing
previous-state: load-status; -- The previous processing state of the load
current-state: load-status; -- The current processing state of the load

id;

associated-buffer: OPTIONAL, buffer FOR contents ; -- The buffer which contains the load

MQUE
-- Specifies the id uniquely identifies a load

INVERSE

END-ENTITY ;
(* Defines the state for collection of products upon which manufacturing operations will be
* performed.

*>

ENTITY resource;
id: id ; -- Identifier for a resource

type:
previous-state: resource-status ; -- The previous status of the resource
current-state: resource-status;-- The current status of the resource
last-product-processed: product ; -- The product last associated with the resource
resource-usage: elapsed-time ; -- Tbe total amount of time a resourcehas been used

time-of-last-update: timestamp ; -- The time of the last update F

id;

current-load: OPTIONAL load FOR resources;

resource-type ; -- The resources type

-- since it has been into service or refreshed

UNIQUE

INVERSE
-- Specifies the id uniquely identifies a resource

-- The load associated with this resource
END-ENTITY;
(* Defines the state for things which will be used to manufactureproducts. Resources may be
* operators, machines, tools, or fixtures.
*>

ENTITY buffer;
id: id ; -- Identifier for a buffer
contents: LIST OF load; -- The loads contained in the buffer

UNIQUE
id;

END-ENTITY ;
-- Specifies the id uniquely identifies a buffer,

(* Defines the state of an area used to temporarily hold loads. *>

ENTITY material;
id : id; -- Identifier for a material
level:

id:

real-quantity; -- Specifies how much materig1 there is

-- Specifies the id uniquely identifies a material
END-ENTITY ;
(* Defines the level of a consumable item that i s used in manufacturing processes.
*>

END-SCHEMA;

We are planning to use these models as the basis for integrating commercial shop floor data
collection systems, the genetic algorithms, and commercial simulation -based scheduling
packages. Eventually, we hope to have the genetic algorithm as part of the scheduler.

Fig 2 Overview of Integrated System

FUTURE WORK

In this paper, we have described a hybrid scheduling approach which combines neural networks
and genetic algorithms. Neural networks select dispatching rules which provide initial schedules
to the genetic algorithm. The genetic algorithm i s being integrated with two simulation -based
commercial scheduling packages. The genetic algorithm generates candidate schedules which are
evaluated using the commercial packages. This evaluation provides a prediction of how well the
shop will perform if this schedule were implemented. This generate -evaluate loop continues until
the final solution i s obt

We have also provided an preliminary EXPRESS data model for representing the status of the
shop floor. This status provides the information the schedulers need to update their simulation
models in order to do reactive scheduling. We have also provided exchange messages which
could be used by commercial shop floor data collection system to provide that status.

We believe that this approach has the potential to solve real-world sequencing and scheduling
problems quickly and to be usable on the factory floor. To benchmark the proposed approach,
we have initiated a sequencing project with a U S manufactuirng firm. We hope to have the
results from that project in time for the conference. t

ACKNOWLEDGEMENTS

The authors would like to thank the following people for their contributions to the development
of the data model and the definition of the change messages. Stephanie Schank from AMP, Inc.,
Steven Duket and Douglas MacFarland from Pritsker Corporation, and Michael Rossi from
AutoSimulation, Inc. In addtion, the authors which to recognize the Manufacturing Technology
program of the US Navy, who have provided support funding for this project.

REFERENCES

BIEGEL? J. and DAVERN, J. Genetic Algorithms and Job Shop Scheduling, Computers and
Industrial Engineering, 1190, vol. 19, no. 1, 81-91.

(8) DAVIS, L. Job Shop Scheduling with Genetic Algorithms, Proceedings on an International
Conference on Genetic Algorithms and Their Applications, Carnegie -Mellon University, USA,
1985, 136-140.

GOLDBERG, D. Genetic Algorithms in Machine Learning, 1988, Addison-Wesley, Menlo Park,
California, USA.

STARKWEATHER, T., WHITELY, D., and COOKSON, B. A Genetic Algorithm for
Scheduling with Resource Consumption, Operations Research in Production Planning and
-9 Control 1993, Springer Verlag, Berlin, 567-583.

YIH, Y. Trace-Driven Knowledge Acquisition (TDKA) for Rule-Based Real-Time Scheduling
Systems, Journal of Intelliaent Munufucfurina, 1990, vol. 1, no. 4, 217-230.

De JONG, K. and SPEARS, W. Using Genetic Algorithms to solve NP-complete Problems,
Proceedings of the Third International Conference on Genetic Algorithms, Carnegie Mellon
University, USA, 1989, 124-132.

JONES, A., RABELO, L., and YM, Y. A Hybrid Approach for Real-Time Sequencing and
Scheduling, International Journal of Computer Integrated Manufacturing, 1995, vol. 8, no.2, 145-
154.

YIH, Y. and JONES, A. Candidate Rule Selection to Develop Intelligent Decision Aids for
Flexible Manufacturing Systems, Operations Research in Production Planning and Control,
1993, Springer Verlag, Berlin, 201-217.

JONES, A. and RABELO, L. Integrating Neural Nets, Simulation, and Genetic Algorithms
for Real-Time Scheduling, Operations Research in Production Planning and Control, 1993,
Springer Verlag, Berlin, 550-566.

[161 GOLDBERG, D. and LINGLE, R., Alleles, loci, and the Traveling Salesman Problem,
Proceedings of the of the International Conference on Genetic Algorithms and Their
Applications, Carnegie Mellon University, USA, 1985, 162-!64.

RUMELHART, D., HINTON, G., and WILLIAMS, R. Learning Internal Representations by
Error Propagation, Parallel Distributed Processing, 1986, MIT Press, Cambridge, MA, 318-
362.

